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 In this paper we have studied the instability and chaos occurring in a pilot-type poppet
 valve circuit .  The system consists of a poppet valve ,  an upstream plenum chamber ,  a
 supply pipeline and an orifice inserted between the pelnum and the pipeline .  Although the
 poppet valve rests on the seat stably for a supply pressure lower than the cracking
 pressure ,  the circuit becomes unstable for an initial disturbance beyond a critical value and
 develops a self-excited vibration .  In this unstable region ,  chaotic vibration appears at the
 period-doubling bifurcation .  We have investigated the stability of the circuit and the
 chaotic phenomenon numerically ,  and elucidated it by power spectra ,  a bifurcation
 diagram and Lyapunov exponent calculations ,  showing that the phenomenon follows the
 Feigenbaum route to chaos .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 P OPPET  valves are pressure-regulating valves extensively used in hydraulic circuits .  The
 circuits including the valve are classified into two categories :  a direct-acting type and a
 pilot type .  In the former the poppet valve is directly connected to a pipeline ,  while in
 the latter the valve is connected to a pipeline through an orifice and a plenum chamber .
 Both types of poppet valve circuits often become unstable ,  developing self-excited
 vibrations and often exhibiting irregular (chaotic) behaviour during self-excitation
 (Hayashi 1995) .

 The vibratory modes of the circuit consist of a poppet valve mode and an infinite
 number of pipeline modes corresponding to the natural frequencies of the fluid column
 in the connecting pipeline ,  infinite because of the continuous nature of the piepline .
 Thus ,  the dynamical behaviour of the system including the poppet valve is complex .

 There have been many studies on the stability of the poppet valve circuit (Backe ́   &
 Ru ̈  nnenburger 1964 ;  Funk 1964 ;  Kasai 1968a , b) .  However ,  these studies have mainly
 treated local stability of the system ,  i . e .,  stability of the steady static points (fixed
 points) .  Little work has been done on global stability ,  self-excited vibrations and
 chaotic phenomena in this system .

 One of the authors has indicated in a previous study that various kinds of chaotic
 vibrations occur in a direct-acting poppet valve circuit with a long lossless pipeline
 (Hayashi & Mochizuki 1987 ;  1989) .  In that study ,  it was found that the pipeline mode
 vibrations become unstable in turn starting from low frequency modes with increasing
 pipeline length .  The system was found to have multiple unstable modes for a long
 pipeline .  As a result ,  the system exhibits diverse self-excited vibrations ,  including
 period-doubling ,  almost periodic vibration composed of two unstable modes of vibra-
 tion ,  phase-locking phenomena between two unstable modes ,  and chaotic vibration .
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 Using numerical simulation and experiments ,  the possibility of Feigenbaum-type chaos
 was shown for a relatively short pipeline circuit and Lorenz-type chaos and
 intermittent-type chaos for a long pipeline circuit .

 Similarly to the direct-acting poppet valve ,  chaotic vibration is expected to occur in a
 pilot-type poppet valve circuit .  Hayashi & Ohi (1993) perfromed numerical analysis
 for the case with a short supply pipeline .  It was found that ,  even when the valve stably
 rests on the valve seat for a supply pressure lower than the cracking pressure ,
 self-excited vibration occurs if a disturbance larger than a critical value is given to the
 poppet valve .  This means the system undergoes subcritical instability .  Occurrence of
 the chaotic vibration ,  however ,  has still not been confirmed in this self-excited vibration
 regime .

 In the present study ,  the authors perform detailed numerical analysis on the chaotic
 vibration occurring in a pilot-type poppet valve circuit with a short pipeline .  The
 dynamics can be approximated by a lumped parameter model .  The numerical analysis
 shows that the resulting self-excited vibration undergoes transition ,  changing from a
 period-one vibration to a chaotic vibration through a period-doubling bifurcation
 cascade ,  with the supply pressure as a system parameter .

 2 .  GOVERNING EQUATIONS

 Figure 1 is a schematic diagram of a pilot-type poppet valve circuit considered here .
 The valve function is to keep the circuit pressure constant in case of excess flow in
 hydraulic systems .  The working fluid flows from a constant pressure supply tank ,  passes
 through a pipeline ,  an orifice and a valve chamber ,  and flows out to the atmosphere
 from the poppet valve when the supply pressure exceeds the ‘cracking’ pressure  P S i  ,
 which is pre-adjusted by the spring supporting the poppet valve .

 Governing equations describing the behaviour of the system are derived referring to
 Figure 1 .  The equation of motion of the poppet is described as a vibratory system with
 a single degree of freedom ;  thus ,
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 Figure 1 .  Schematic diagram of a poppet valve circuit of pilot type .
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 where  X  is the valve displacement (valve lift) ,   m  the mass of the poppet ,   d   the viscous
 damping coef ficient ,   k  the stif fness of the spring supporting the poppet ,  and  f 0  the initial
 spring compression force .   f 0  may be varied in order to pre-adjust the cracking pressure
 P S i   at which the valve begins to open ,  according to

 f 0  5  kX i  5  A P P S i  ,  (2)

 where  X i   is the initial spring compression and  A P   the cross-sectional area of the
 valve-seat aperture .   F  is the axial flow force acting on the poppet .  For a sharp-edged
 valve seat ,  this axial force is given by (Takenaka & Urata 1975)

 F  5  A P P C [1  2  4 C P ( X  / d P )  sin  2 a  ] ,  (3)

 where  P C   is the valve chamber pressure ,   C P   the discharge coef ficient of the poppet
 valve [see equation (7) below] ,   d P   the diameter of the valve-seat aperture ,  and  a   the
 half-angle of the poppet .

 The capacitive characteristic of the valve chamber is described by

 V

 b

 d P C

 d t
 5  Q O  2  Q C  ,  (4)

 where  Q O   is the orifice flow rate ,   Q C   the poppet valve flow rate ,   V  the valve chamber
 volume ,  and  b   the bulk modulus of the working fluid .

 Since the supply line length is assumed to be short ( L  5  0 ? 3  m) ,  the dynamics of the
 pipeline can be approximated by the lumped parameter model

 r L

 A L

 d Q O

 d t
 5  P S  2  P O  ,  (5)

 where  P S   is the supply pressure ,   L  the length of the pipeline and  A L   the cross-sectional
 area of the pipeline .

 The flow rate through the poppet valve is

 Q C  5  C P π d P X  sin  a – 2 Õ ( P C )
 r

 ,  (6)

 where  d p   is the diameter of the valve seat ,   r   is the density of the working fluid ,  and  C P

 is the discharge coef ficient of the poppet valve ,  which changes almost linearly for small
 valve lift and becomes constant for large valve lift .  Thus ,  it is approximated on the
 basis of the experimental results shown in Figure 2 by the following formula :

 C P  5  C P O S  g X

 1  1  g X
 D ,  (7)

 where  C P O  5  0 ? 8 and  g  5  40  000  m 2 1 .   Õ ( P c ) is a function defined as follows :

 Õ ( P C )  5 H P C

 0
 for  P C  .  0
 for  P C  ,  0 .

 (8)

 When the pressure in the valve chamber drops below atmospheric pressure in the
 actual system ,  air dissolved in the working fluid is released and forms a cavity .  As a
 result ,  the chamber pressure is maintained at atmospheric pressure .   Õ ( P C ) in equation
 (6) simulates this actual situation .
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 Figure 2 .  Experimental result for discharge coef ficient of poppet valve ( d P  5  6  mm ,   P S i  5  4  MPa) :
 ( –  –  – )  C P  5  0 ? 8 g X  / (1  1  g X  ) ;  ( s ) ,  experimental .

 The orifice flow  Q O   is

 Q O  5  C O A O  sgn( P O  2  P C ) – 2  u P O  2  P C u
 r

 ,  (9)

 where  C O   is the discharge coef ficient of the orifice and  A O   the area of the orifice .
 The vibrating poppet sometimes impacts against the valve seat .  In particular ,  this

 inevitably occurs for supply pressures below the crackling pressure .  The following
 collision condition is applied in the numerical simulation

 X ~  ( t 1 )  5  2 eX ~  ( t 2 ) ,  X  ( t Ú )  5  0 ,  (10)

 where  X ~  ( t 2 ) and  X ~  ( t 1 ) are the valve velocities just before and after collision ,
 respectively ,  and  e  is the restitution coef ficient .

 To recapitulate ,  the set of governing equations may be summarized as follows :

 (11)

 mX ̈  1  d X ~  1  k ( X  1  X i )  5  A p P C F 1  2  4 C p o S  g X  2

 1  1  g X
 D  1

 d P
 sin  2 a G ,

 P ~  C  5 S b

 V
 D F Q O  2  C P O S  g X  2

 1  1  g X
 D π d P  sin  a – 2 Õ ( P C )

 r
 G ,

 Q ~  O  5 S A L

 r L
 D F P S  2  P C  2

 r

 2 C 2
 O A 2

 O
 u Q O u  Q O G ,

 X ~  ( t 1 )  5  2 eX ~  ( t 2 ) ,  X  ( t Ú )  5  0 .

 The nonlinear simultaneous equations (11) for the unknown variables  X ,  P C   and  Q O

 are numerically solved by the Runge – Kutta (R – K) method .  The calculation is mainly
 carried out for a supply pressure lower than the cracking pressure of the valve ;  thus ,
 the poppet inevitably collides against the valve seat ,  as stated previously .  In general ,
 the collision occurs in the interval of meshpoints of time in the numerical calculation .
 The total accuracy of the numerical solution is markedly reduced ,  if the collision time
 instant is calculated by the ordinary ,  simple linear interpolation ;  if  X  ( t n ) X  ( t n 1 1 )  ,  0 ,
 then the instant of collision is given as [ X  ( t n 1 1 ) t n  2  X  ( t n ) t n 1 1 ] / [ X  ( t n 1 1 )  2  X  ( t n )] .  The
 calculation here is performed by using the ‘‘time stepsize subdivision method’’
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 T ABLE  1
 System parameters used in simulation

 Quantity  Symbol  Value  Units

 Discharge coef ficient of orif fice
 Valve diameter
 Orifice diameter
 Pipeline diameter
 Restitution coef ficient
 Spring stif fness
 Pipeline length
 Valve mass
 Valve chamber volume
 Half angle of poppet
 Bulk modulus
 Damping coef ficient
 Density of fluid

 C O
 d P
 d O
 d L
 e
 k
 L
 m
 V
 a
 b
 d
 r

 0 ? 64
 6 ? 0  3  10 2 3

 2 ? 0  3  10 2 3

 8 ? 9  3  10 2 3

 0 ? 65
 1 ? 284  3  10 4

 0 ? 3
 7 ? 4  3  10 2 2

 8 ? 1  3  10 2 6

 45
 1 ? 484  3  10 9

 4 ? 905
 8 ? 563  3  10 2

 m
 m
 m

 N / m
 m
 kg
 m 3

 deg
 N / m 2

 kg / s
 kg / m 3

 proposed by one of the authors (Hayashi ,  Iizuka & Hayase 1994a) ,  which makes the
 accuracy of calculation for the collision instant to match that of the R – K method ,  by
 iteratively reducing the time step-size between two nodal points of time  t n   and  t n 1 1

 containing a collision point .
 The system parameters used in the simulation are listed in Table 1 .
 To perform the computations ,  the Cray Y-MP / 8 in the Institute of Fluid Science ,

 Tohoku University was used .  This computer has 16 significant digits in decimal
 numeration for single precision arithmetic .  The time step-size used was  h  5  1 ? 0  3
 10 2 7  s .  The highest frequency of the self-excited vibration considered here is about
 f n  .  1050  Hz ,  as seen from the power spectra to be shown later ,  so the dimensionless
 time step-size is  H  5  f n h  5  1 ? 05  3  10 2 4 .  Considering that a rough indication of the
 accumulated error of the R – K method is of the order of  h 4 ,  the total accuracy of the
 calculation is satisfactory .

 3 .  LOCAL STABILITY

 As a starting point for the analysis ,  a study of the local system stability is performed .
 To facilitate this ,  equations (11) are linearized at a static state ( X  E ,  P C E  and  Q O E ) to
 the following form :

 (12)

 mx ̈  1  d x ~  1  kx  5  a P  p c  2  k X x ,

 p ~  C  5 S  1
 C
 D ( q O  2  c P  p C  2  c X x ) ,

 q ~  O  5  2 S 1
 I
 D S p C  1

 1
 c O

 q O D ,

 C  5
 V

 b
 ,  I  5

 r L

 A L
 ,  a P  5 S  Û F

 Û P C
 D

 E
 ,  k X  5  2 S  Û F

 Û X
 D

 E
 ,

 c P  5 S Û Q C

 Û P C
 D

 E
 ,  c X  5 S Û Q C

 Û X
 D

 E
 ,  c O  5

 C  2
 O A 2

 O

 r Q O E
 ,

 where the variables  x ,  p C   and  q O   represent variational quantities from static state
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 values  A E ,   P C E  and  Q O E ,  in which the subscript E indicates the values at the steady
 static state ,  which are obtained for the given  P S i   ( 5 kX i  / A P ) and  P S   from the following
 equations :

 k ( X  1  X i )  5  A P P C F 1  2  4 C P 0 S  g X  2

 1  1  g X
 D  1

 d P
 sin  2 a G ,

 Q O  2  C P O S  g X  2

 1  1  g X
 D π d P  sin  a – 2 P C

 r
 5  0 ,  (13)

 P S  2  P C  2
 r

 2 C 2
 O A 2

 O
 Q  2

 O  5  0 .

 The characteristic equation is derived from equation (12) ,  i . e .,

 s 4  1  A 3 s 3  1  A 2 s 2  1  A 1 s  1  A 0  5  0 ,  (14)
 where

 (15)

 v  2
 P  5

 k  1  k X

 m
 ,  v  2

 L  5
 1  1  c P  / c O

 CI
 ,

 2 z P v P  5
 d

 m
 ,  2 z L v L  5

 c P

 C
 1

 1
 CI

 ,

 A 0  5  v  2
 P v  2

 L  1 S a P

 m
 D v  2

 L
 c X

 c O  1  c P
 ,

 A 1  5  2 z P v P v  2
 L  1  2 z L v L v  2

 p  1
 a P c X

 mC
 ,

 A 2  5  v  2
 P  1  v  2

 L  1  (2 z P v P )(2 z L v L ) ,

 A 3  5  2 z P v P  1  2 z L v L .

 The stability condition is given as

 A 1 A 2 A 3  2  A 2
 1  2  A 0 A 3  .  0 .  (16)

 Since this system has a small damping coef ficient and a small pipeline resistance ,  all
 characteristic roots are obtained as complex conjugate pairs .  Therefore ,  the unstable
 modes are always dynamically unstable .

 Figure 3(a) shows the stability map of the poppet valve circuit calculated from
 equation (16) for the static valve lift  X  E  and the supply pressure  P S .  It is noted that the
 static valve lift  X  E  is determined from equation (13) by specifying the supply pressure
 P S   and the cracking pressure  P S i  .  The solid line shows the critical curve below which the
 system is unstable .  A dashed line shows the static characteristic of the valve lift  X  with
 the supply pressure  P S   corresponding to the cracking pressure  P S i  5  4 ? 0  MPa .  The static
 valve lift moves along the abscissa for the supply pressure smaller than  P S i  .  However ,  it
 moves along the dashed curve when the supply pressure becomes larger than  P S i  .  The
 static state becomes unstable on the segments AB and CD of the curve .  Figure 3(b)
 indicates a partially enlarged stability map for the small lift region of Figure 3(a) (the
 ordinate is scaled to  4 X E ) .  According to Figure 3(b) ,  the valve is stable in the small lift
 region ,  including  X  5  0 .

 Figure 4 indicates the change of the natural frequencies (dotted lines) corresponding
 to the imaginary part of characteristic roots of the linearized system and the
 frequencies of self-excited vibrations obtained from the simulation (symbols  s   and
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 d ,  respectively) with the supply pressure  P S .  The natural frequencies of the linearized
 system at  P S  5  P S i   (cracking pressure) coincide with those of the poppet valve and the
 pipeline-chamber system ,

 f p  5
 1

 2 π  –  k

 m
 ,  and  f L  5

 1
 2 π  – b A L

 r VL
 ,  (17)

 respectively .  Thus ,  we label the corresponding vibratory modes as the ‘valve mode’ and
 the ‘pipeline mode’ ,  respectively .  As seen from Figure 4 ,  the pipeline mode is unstable
 on the segment AB and the valve mode on the segment CD (Hayashi ,  Hayase &
 Kurahashi 1994b) .

 Figure 4 shows that the self-excitation of the pipeline mode occurs even for a supply
 pressure lower than the cracking pressure  P S i  .  This implies that it is possible for
 self-excited vibration to occur due to large disturbances beyond a critical value ,
 although the poppet in steady state rests on the valve seat stably ,  as seen in Figure
 3(b) ;  in other words ,  the instability is subcritical .

 The situation is demonstrated in Figure 5 ,  which shows the responses for slightly
 dif ferent initial velocities ,  for the system having an identical operating condition which
 is indicated by the symbol ( . ) in Figure 3(b) .  For the smaller initial velocity in Figure
 5(a) ,  the poppet settles down to the original steady static state and rests on the seat
 again ,  while self-excited vibration develops as shown in Figure 5(b) for a slightly larger
 initial velocity .  This is typical of hard self-excited vibration ,  i . e .  of subcritical
 instability (Hayashi & Ohi 1988 ,  1993) .  This is conjectured to be caused by a shift of
 the equivalent static state into the unstable region shown in Figure 3(b) ;  the centre of
 the poppet positional vibration in the pipeline mode is located at some distance from
 the valve seat due to the collision of the poppet against the seat .  Chaotic phenomena
 occur in this region ,  accompanying the hard self-excited vibration .

 4 .  CHAOTIC VIBRATION

 A steady static point on the segment AB in Figure 3 is unstable ,  and a self-excited
 vibration in the piepline mode is excited from infinitesimal disturbances .  This type of
 vibration is so-called ‘‘soft self-excited vibration’’ .  Once the vibration is self-excited ,
 the vibration does not cease by lowering the supply pressure to below the cracking
 pressure ,  and the nature of the vibration shifts from soft self-excitation to the hard one .
 The vibration is maintained up to the considerably lower supply pressure of
 P S  5  2 ? 8  MPa ,  as seen in Figure 4 .

 4 . 1 .  V IBRATORY  W AVEFORMS ,  P OWER  S PECTRA AND  P HASE  P LANE  P ATH

 A change of vibratory waveform was examined numerically under the condition that
 the supply pressure was increased quasi-steadily from 3 ? 0  MPa to 4 ? 0  MPa .  In the
 simulation ,  each calculation for a given supply pressure was performed until  t  5  0 ? 25  s
 in order to allow the system to attain a steady state vibration .  The supply pressure  P S ,
 which is the system parameter varied ,  was then slightly increased and ,  for the next step
 of the calculation ,  the last set of state variables were used as initial conditions .

 The results are shown in Figure 6(a) – 6(f) .  In each case ,  the uppermost figure shows
 the displacement  X  of the poppet ,  the centre figure the power spectrum of  X  / X  r e f  (the
 reference quantity  X  r e f  5  1  m) and the bottom figure the phase-plane plot of  X  vs .   X ~  .

 In Figure 6(a) for  P S  5  3 ? 4  MPa ,  the waveform of the vibration is almost sinusoidal
 with a frequency corresponding to the pipeline mode frequency .  In Figure 6(b) ,  for
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 Figure 5 .  Responses of poppet valve for slightly dif ferent initial conditions :  (a) initial velocity  X ~  (0)  5
 0 ? 212  m / s ,  supply pressure  P S  5  3 ? 4  MPa ;  (b)  X ~  (0)  5  0 ? 215  m / s ,   P S  5  3 ? 4  MPa .
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 Figure 6(a) .  Comparison of self-excited vibrations in dif ferent supply pressure for  P S  5  3 ? 4  MPa ;
 period-one vibration :  (i) poppet vibration ;  (ii) power spectrum ;  (iii) phase-plane plot .
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 Figure 6(d) .  Comparison of self-excited vibrations in dif ferent supply pressure for  P S  5  3 ? 76  MPa ;
 period-three vibration .  See key in Figure 6(a) .
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 Figure 6(e) .  Comparison of self-excited vibrations in dif ferent supply pressure for  P S  5  3 ? 8  MPa ;  chaotic
 vibration .  See key in Figure 6(a) .
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 Figure 6(f) .  Comparison of self-excited vibrations in dif ferent supply pressure for  P S  5  4 ? 0  MPa ;
 period-three vibration .  See key in Figure 6(a) .
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 P S  5  3 ? 5  MPa ,  the response bifurcates to period-2 vibration .  In Figure 6(c) ,  for
 P S  5  3 ? 7  MPa ,  the vibration is chaotic .  The power spectrum rises at all frequencies ,
 while the peak width broadens .  These are typical features of chaotic phenomena .
 Increasing  P S   still further ,  the vibration changes to period-3 and then becomes chaotic
 once again ,  as shown in Figure 6(d) for  P S  5  3 ? 76  MPa and (e) for  P S  5  3 ? 8  MPa .  For
 higher  P S  ,  the vibration passes through period-2 and period-3 [Figure 6(f)] vibrations
 and finally it returns to period-1 ,  which is a conventional self-excited vibration .

 4 . 2 .  B IFURCATION  D IAGRAM

 Figure 7 is a bifurcation diagram on which all the maxima of the vibratory waves of
 the poppet displacement are plotted against supply pressure  P S .  In this figure ,  the
 right-hand side dashed curve represents the static valve lift .  The points A and B
 correspond to those in Figure 3 ;  they indicate the stability boundary points .  Other
 static points except the interval AB in the figure are locally stable as described
 previously .

 The self-excited vibration undergoes a series of period-doubling bifurcations with
 increasing  P S   leading to the first chaotic region .  Figure 6(c) corresponds to the chaotic
 vibration occurring in this region .  With further increase in  P S ,  a period-3 window
 corresponding to Figure 6(d) appears .  At higher  P S   still ,  the vibration enters the second
 chaotic regime .  Figure 6(e) corresponds to the chaotic vibration occurring in this
 regime .  The chaotic vibration disappears around  P S  5  3 ? 85  MPa .  The vibration goes
 through period-2 and period-3 and returns to period-1 vibration around the cracking
 pressure  P S  5  4 ? 0  MPa .

 The first period-doubling bifurcation sequence in Figure 7 is shown in detail in
 Figures 8(a) ,  (b) and (c) ;  Figures 8(b) and (c) are magnifications of the regions
 enclosed by squares in Figures 8(a) and (b) ,  respectively .  Bifurcation points obtained
 from the figures are listed in Table 2 ,  where  m n   represents the bifurcation point from
 the period-2 n 2 1  vibration to the period-2 n  vibration .  Table 2 shows that the ratio
 D n  5  ( m n 2 1  2  m n 2 2 ) / ( m n  2  m n 2 1 ) approaches the Feigenbaum number  D  5  lim

 n 5 ̀
 D n  5

 4 ? 6692016  .  .  .  (Feigenbaum 1980) .  The bifurcation sequence resembles very much the
 Feigenbaum route to chaos .

 Assuming that the ratio  D n   after  n  5  6 can be approximated by the Feigenbaum
 number ,  the point of accumulation  P S a c  is estimated from Table 2 as

 P S a c  5  m  4  1  ( m  5  2  m  4 )  1  ( m  6  2  m  5 )  1  ( m  7  2  m  6 )  1  .  .  .

 5  m  4  1  ( m  5  2  m  4 )  1  ( m  5  2  m  4 )
 1
 D 6

 1  ( m  5  2  m  4 )
 1

 D 6 D 7
 1  .  .  .

 .  m  4  1  ( m  5  2  m  4 )  1  ( m  5  2  m  4 )
 1
 D

 1  ( m  5  2  m  4 )
 1
 D 2  1  .  .  .

 .  m  4  1  ( m  5  2  m  4 )
 1

 1  2
 1
 D

 .  3 ? 634852 ,  (18)

 where  m  4  5  3 . 63409 ,   m  5  2  m  4  5  0 ? 000599 and  D  5  4 ? 66920  .  .  .  .  The accumulation point
 is indicated in Figure 8 .
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 4 . 3 .  L YAPUNOV  E XPONENTS

 Here we discuss the change of the largest Lyapunov exponent  l   with supply pressure
 P S   used as the system parameter varied ,  by utilizing the method of Wolf  et al .  (1985)
 which makes use of time-series data of chaotic vibrations .  The exponent  l   is calculated
 as follows .

 The state variables are defined as

 Y  5  ( X ,  X ~  ,  P C  ,  Q O ) T ,  (19)

 and the governing equations are expressed as

 Y ~  5  F  ( Y ) .  (20)

 A solution of equation (20) for an appropriate initial condition  Y 0  is taken as a fiducial
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 Figure 7 .  Bifurcation diagram of vibrations for operating point of  P S i  5  4 ? 0  MPa .
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 Figure 8 .  Enlargement of bifurcation map for period-doubling vibrations .  (a) Bifurcation of 1  5  2  5  4  5

 8 ;  (b) bifurcation of 2  5  4  5  8  5  16 ;  (c) bifurcation of 8  5  16  5  32  5  64 .

 solution ,  and let the state variable just after the  n th collision at a certain time and the
 ( n  1  1)th collision be

 Y n  5  (0 ,  X ~  1
 n  ,  P C n  ,  Q O n ) T ,  (21)

 and
 Y n 1 1  5  (0 ,  X ~  1

 n 1 1 ,  P Cn 1 1 ,  Q On 1 1 )
 T ,  (22)

 respectively ,  where  X ~  1
 n  ,  and  X ~  1

 n 1 1  are the valve velocities just after the  n th and
 ( n  1  1)th collisions .

 Setting the time interval between successive  n th and ( n  1  1)th collisions as  D t n  , Y n 1 1
 is calculated by the following integral for the initial condition  Y n :

 Y n 1 1  5 E D t n

 0
 F  ( Y ,  Y n )  d t .  (23)

 We consider the relation as a mapping from  Y n   to  Y n 1 1  which are discretized by
 successive collisions and represent the relation by

 Y n 1 1  5  f  ( Y n ) .  (24)

 By slightly shifting the initial condition from  Y n   to  Y n  1  d Y n  ,  where  d Y n   is a small
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 Figure 8 .  ( Continued . )

 perturbation whose direction coincides with  Y n ,  the state variable just after the
 successive collisions is given by

 Y n 1 1  1  d Y n 1 1  5 E D t 9 n

 0
 F  ( Y ,  Y n  1  d Y n )  d t ,  (25)

 where  D t 9 n   means the time interval between the successive collisions for the slightly
 shifted infinitial conditions .  From the above discussion ,  the Lyapunov exponent  l   for
 the discrete dynamical system (24) can be approximated by

 l  5  lim
 N 5 ̀

 1
 N

 O N 2 1

 n 5 1
 log  u  f  9 ( Y n ) u

 .
 1
 N
 O N 2 1

 n 5 1
 log

 u d Y n 1 1 u
 u d Y n u

 .  (26)

 In order to examine the influence of the magnitude of small perturbations  u d Y n u   given
 as initial disturbances and of the iteration cycle  N  (the number of collisions) on
 convergence of the calculation for the Lyapunov exponent  l ,  the test calculations were
 carried out for  u d Y n u  5  10 2 8 ,  10 2 1 2 ,  10 2 1 3  and the iteration cycle  N  5  1500 .  The
 operating condition of the system is chosen as  P S i  5  4 ? 0  MPa and  P S  5  3 ? 7  MPa .  The
 results are shown in Figure 9 .

 As seen in Figure 9 ,  two curves plotted by a solid line and a dotted line with open
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 Figure 8 .  ( Continued . )

 circles ( s ) corresponding to  u d Y n u  5  10 2 1 2  and 10 2 8  converge to nearly the same value ,
 and they do not show large changes for  N  .  500 .  On the other hand ,  the curve with
 closed circles ( d ) for the smallest perturbation  u d Y n u  5  10 2 1 3  converges to a slightly
 dif ferent value from the other curves ,  and the variation for  N  .  500 is somewhat larger
 than the others .  This is considered to be caused by round-of f errors ;  thus the
 calculation of  l   was carried by using  u d Y n u  5  10 2 1 2 .

 Figure 10 shows the variation of  l   with  P S .  The positive region of  l   coincides with
 the chaotic region in Figure 7 ,  where points are densely distributed .  In the region for the

 T ABLE  2
 Bifurcation sequences

 n  2 n 2 1
 5  2 n  m n  m  n  2  m n 2 1  D n

 1
 2
 3
 4
 5
 6

 1  5  2
 2  5  4
 4  5  8
 8  5  16

 16  5  32
 32  5  64

 3 ? 47000
 3 ? 61974
 3 ? 631291
 3 ? 634090
 3 ? 634689
 3 ? 634820

 —
 0 ? 14972
 0 ? 01155
 0 ? 00280
 0 ? 000599
 0 ? 000131

 —
 —

 12 ? 963
 4 ? 125
 4 ? 674
 4 ? 573
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 Figure 9 .  Convergence of Lyapunov exponent with cycle number  n .  ( s )  d Y n  5  10 2 8 ;  (—)  d Y n  5  10 2 1 2 ;
 ( d )  d Y n  5  10 2 1 3 .
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 Figure 10 .  Lyapunov exponent with supply pressure ( P S i  5  4 ? 0  MPa) .
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 window of period-3 vibration ,   l   does not become negative ,  but it becomes nearly zero
 in this calculation .

 5 .  CONCLUSIONS

 We have numerically studied chaotic vibratory phenomena in a poppet valve circuit
 with a relatively short supply line by means of power spectra ,  a bifurcation diagram and
 Lyapunov exponents .  It is clarified that the predominant dynamics are a period-
 doubling sequence culminating in chaos ,  followed by a reversal to period-1 motion at
 high values of the supply pressure ,  which is the system parameter varied .  The
 period-doubling route to chaos is quantitatively confirmed by computation of the
 associated universal Feigenbaum number .  Calculations of the largest positive Lyapunov
 exponent confirms the existence of chaos .  This dynamical behaviour occurs for supply
 pressures lower than the cracking pressure of the poppet valve .
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 APPENDIX :  NOMENCLATURE

 A L  cross-sectional area of pipeline ,   π d  2
 L / 4

 A O  opening area of orifice ,   π d  2
 O / 4

 A P  cross-sectional area of valve seat ,   π d  2
 P / 4

 a P  equivalent cross-sectional area of valve seat ,  [ Û F  / Û P C ] E
 C  capacitance of valve chamber ,   V  / b
 C O  discharge coef ficient of orifice
 C P  discharge coef ficient of poppet valve
 C P 0  discharge coef ficient of poppet valve for large valve lift
 c P  linearized discharge coef ficient of poppet valve [ Û Q C  / Û P C ] E
 c X  linearized flow gain of poppet valve ,  [ Û Q C  / Û X  ] E
 d L  inner diameter of pipeline
 d O  diameter of orifice aperture
 d P  diameter of poppet valve seat aperture
 e  restitution coef ficient of poppet to valve seat
 F  axial flow force acting on poppet
 f 0  initial compression force of suspension spring ,   kX i
 h  time stepsize in Runge – Kutta computation
 I  inertance of pipeline ,   r L / A L
 k  spring constant of suspension spring
 k X  hydraulic spring force ,  [ Û F  / Û X  ] E
 L  supply pipeline length
 m  poppet mass
 P C  pressure in valve chamber
 P C E  static valve chamber pressure
 P O  upstream pressure of orifice
 P S  supply pressure
 P S i  cracking pressure ,   f 0 / A P
 p C  variational valve chamber pressure
 Q O E  static flow
 Q O  flow rate through orifice
 Q C  flow rate through poppet valve
 q O  variational flow rate through orifice
 V  volume of poppet chamber
 X  poppet valve displacement (valve lift)
 X  E  static valve lift
 X i  initially compressed length of suspension spring
 X  r e f  reference quantity for valve lift
 x  variational displacement of poppet valve
 D  Feigenbaum number
 a  half angle of poppet
 b  bulk modulus of working fluid (oil)
 g  poppet valve factor
 d  viscous damping coef ficient
 l  Lyapunov exponent
 m n  bifurcation point
 r  density of working fluid


